- Rappels
Une enquête statistique consiste à observer une certaine population d’individus auxquels on a décidé de s’intéresser, et à déterminer la répartition d’un certain caractère statistique dans cette population. Les informations relevées s'appellent des données.
- L’effectif d’une population est le nombre d’individus qui correspondent à la même valeur du caractère.
- L’effectif total est le nombre total d’individus d’une population étudiée.
- La fréquence est le quotient de l’effectif d’un caractère sur l’effectif total, elle est souvent exprimée en pourcentage.
- Moyenne d’une série statistique
- Définition
- Exemple
Pour calculer la moyenne d’une série statistique, il faut :
- Additionner toutes les valeurs de la série
- Diviser la somme par le nombre total de valeurs
Remarque :
Cette méthode devient peu pratique quand le nombre de valeurs est très grand.
La population étudiée est : L’ensemble des moyennes trimestrielles d’un élève de quatrième.
Le caractère étudié est : La valeur de ces notes.
Les données sont :
Matières |
Français |
Maths |
Hist-Géo |
LV1 |
LV2 |
SVT |
Physique |
EPS |
Arts |
Notes |
12,3 |
15,5 |
13,2 |
11,8 |
9,5 |
14,1 |
16,5 |
18,1 |
10,5 |
- Moyenne pondéré d’une série statistique
- Définition
- Exemples
Pour calculer la moyenne pondérée d’une série statistique, il faut :
- Effectuer les produits de chaque valeur du caractère par l’effectif qui lui correspond
- Additionner tous ces produits
- Diviser la somme par l’effectif total
- Cas où le nombre de données est élevé
- Cas d’une pondération volontaire
La population étudiée est : l’ensemble des 100 notes du devoir commun du collège.
Le caractère étudié est : la valeur des notes.
Les données sont dans ce tableau:
Notes |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
effectifs |
5 |
7 |
6 |
10 |
16 |
19 |
13 |
11 |
8 |
5 |
Effectif´ note |
Remarque :
Il est possible d’utiliser la moyenne simple en additionnant toute les notes de chaque élève.
Cette méthode n’est pas pratique quand le nombre de données est élevé.
Dans ce cas, il sera parfois nécessaire de regrouper les données en classes.
Dans le cas de la moyenne d’un élève (comme vu au paragraphe II), il est parfois nécessaire d’attribuer des coefficients de pondération différents à chaque discipline selon leur importance par rapport à un projet. Le calcul de la moyenne se fera en appliquant la méthode de la moyenne pondérée.
Projet littéraire :
On attribue les coefficients les plus élevés aux "matières littéraires"
Matières |
Français |
Maths |
Hist-Géo |
LV1 |
LV2 |
SVT |
Physique |
EPS |
Arts |
Notes |
12,3 |
15,5 |
13,2 |
11,8 |
9,5 |
14,1 |
16,5 |
18,1 |
10,5 |
Coefficients |
6 |
2 |
3 |
3 |
3 |
2 |
1 |
2 |
3 |
Projet scientifique :
On attribue les coefficients les plus élevés aux matières scientifiques
Matières |
Français |
Maths |
Hist-Géo |
LV1 |
LV2 |
SVT |
Physique |
EPS |
Arts |
Notes |
12,3 |
15,5 |
13,2 |
11,8 |
9,5 |
14,1 |
16,5 |
18,1 |
10,5 |
Coefficients |
3 |
6 |
2 |
1 |
1 |
4 |
5 |
2 |
1 |
Conclusion :
L’élève a un profil plus scientifique que littéraire